Business PreCalculus MATH 1643 Section 004, Spring 2014 Lesson 20: Polynomial Functions

Definition 1. Quadratic Function: A polynomial function of degree n is a function of the form

 $f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + a_{n-3} x^{n-3} + \dots + a_2 x^2 + a_1 x + a_0,$

where n is a **nonnegative** integer and the **coefficients** a_n , a_{n-1} , a_{n-2} , \cdots , a_{n-3} , a_2 , a_1 , a_0 are real numbers with $a_n \neq 0$.

Definition 2. Leading Term: The term $a_n x^n$ is called the **leading term**.

Definition 3. Leading Coefficient: The number a_n is called the *leading coefficient*.

Definition 4. <u>Constant Term:</u> The number a_0 is called the constant term.

Remark 1. Note that the **domain** of a polynomial function is all real numbers or $(-\infty, \infty)$.

Example 1. The function $f(x) = 2x^3 - 5x^4 + 7$ is a polynomial function of degree 4, leading term $-5x^4$, leading coefficient -5, and constant term 7.

Definition 5. <u>Power Function</u>: A polynomial function of the form

$$f(x) = ax^n,$$

is called a **power function** of degree n where a is a **nonzero** real number and n is a **positive** integer.

Example 2. The function $f(x) = 2x^3$ is a power function of degree 3.

Definition 6. End Behavior for the Graph of $f(x) = ax^n$: The behavior of a function y = f(x) as $x \to \infty$ or $x \to -\infty$ is called the **end behavior** of the function.

First, we will discuss the behavior of $f(x) = ax^n$ if n is even. Since <u>n is even</u> then the end behavior of $f(x) = ax^n$ is similar to either $y = x^2$ or $y = -x^2$ depending whether a > 0 or a < 0.

If a > 0, then the graph of $f(x) = ax^n$ rises to the left and right similar to $y = x^2$. We write $y = f(x) \to \infty$ as $x \to \infty$ and $y = f(x) \to \infty$ as $x \to -\infty$. Pictorially,

If a < 0, then the graph of $f(x) = ax^n$ falls to the left and right similar to $y = -x^2$. We write $y = f(x) \to -\infty$ as $x \to \infty$ and $y = f(x) \to -\infty$ as $x \to -\infty$. Graphically,

Second, if <u>n is odd</u> then the end behavior of $f(x) = ax^n$ is similar to either $y = x^3$ or $y = -x^3$ depending whether a > 0 or a < 0. For a > 0, the graph of $f(x) = ax^n$ rises to the right and falls to the left similar to $y = x^3$. We write $y = f(x) \to \infty$ as $x \to \infty$ and $y = f(x) \to -\infty$ as $x \to -\infty$. Graphically,

If a < 0, the graph of $f(x) = ax^n$ rises to the left and falls to the right similar to $y = -x^3$. We write $y = f(x) \to -\infty$ as $x \to \infty$ and $y = f(x) \to \infty$ as $x \to -\infty$. Pictorially,

Example 3. Given the function $f(x) = 2x^5$. Since n = 3 is odd and a = 2 > 0, then f(x) behaves similar to x^3 . This means that $f(x) = 2x^5 \to \infty$ as $x \to \infty$ and $f(x) = 2x^5 \to -\infty$ as $x \to -\infty$.

Definition 7. End Behavior for the Graph of Polynomial Function: Let $f(x) = 2x^3 + 5x^2 - 7x + 11$ be a polynomial function of degree 3. Then the end behavior of f(x) is similar to the end behavior of its leading term because:

$$f(x) = 2x^3 + 5x^2 - 7x + 11$$

= $x^3(2 + \frac{5x^2}{x^3} - \frac{7x}{x^3} + \frac{11}{x^3})$
= $x^3(2 + \frac{5}{x} - \frac{7}{x^2} + \frac{11}{x^3})$

$$\approx x^3(2+0-0+0) \qquad When \ x \ is \ very \ large$$
$$= 2x^3.$$

The above definition leads to the following:

Definition 8. The Leading Term Test: Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + a_{n-3} x^{n-3} + \cdots + a_2 x^2 + a_1 x + a_0$ be a polynomial function. Its leading term is $a_n x^n$. The behavior of the graph of f(x) as $x \to \infty$ or $x \to -\infty$ is similar to the behavior of $a_n x^n$.

Definition 9. Zeros of Polynomial Functions: If f is a polynomial function and c is a real number, then the following statements are equivalent:

- 1. c is a zero of f.
- 2. c is a solution of the equation f(x) = 0.
- 3. c is an x-intercept of the graph of f(x).
- **Example 4.** Find the zeros of the polynomial function $f(x) = x^3 + 2x^2 x 2$. Solution: To find the zeros of f(x), we solve the equation f(x) = 0.

$$f(x) = 0$$

$$x^{3} + 2x^{2} - x - 2 = 0$$

$$x^{2}(x+2) - 1(x+2) = 0$$

$$(x+2)(x^{2} - 1) = 0$$

$$(x+2)(x+1)(x-1) = 0.$$

Then x = -2, x = -1, or x = 1 are the zeros of the function $f(x) = x^3 + 2x^2 - x - 2$.

Remark 2. A polynomial function of degree n has at most n real zeros.

Definition 10. <u>Multiplicity of a Zero:</u> If c is a zero of a polynomial function f(x) and the corresponding factor x - c occurs exactly m times when f(x) factored completely, then c is called a zero of multiplicity m.

Example 5. Find the zeros of the polynomial function $f(x) = x^2(x+1)(x-2)$ and give the multiplicity of each zero.

Solution: To find the zeros of f(x), we solve the equation f(x) = 0.

$$f(x) = 0$$
$$x^{2}(x+1)(x-2) = 0$$

Then x = 0 is a zero of f(x) with multiplicity 2, x = -1 is a zero of f(x) with multiplicity 1 and x = 2 is a zero of f(x) with multiplicity 1.

Note that the degree of this polynomial function is 4.

Remark 3. The multiplicity, m, of a zero, c, helps sketch the graph of polynomial functions. We distinguish between the two cases m is even or m is odd.

1. If m is odd, the graph of f(x) crosses the x-axis at x = c.

2. If m is even, the graph of f(x) touches but does not cross the x-axis at x = c.

Definition 11. Intermediate Value Theorem: Let a and b be two numbers with a < b. If f(x) is a polynomial function such that f(a) and f(b) have opposite signs, then there is at least one number c with $\underline{a < c < b}$, for which $\underline{f(c) = 0}$. This means that there is a zero for the function between a and b.

Example 6. Show that the function $f(x) = -2x^3 + 4x + 5$ has a real zero between 1 and 2.

<u>Solution</u>: To prove the existence of the zero, we need to find f(1) and f(2) and compare their signs.

$$f(1) = -2(1)^3 + 4(1) + 5$$

= 7.

$$f(2) = -2(2)^3 + 4(2) + 5$$

= -3

Since f(1) and f(2) have **opposite** signs, then $f(x) = -2x^3 + 4x + 5$ has a real zero between 1 and 2.